

Traffic Impact Assessment

15 Hilwa Street, 896-898 Woodville Road, Villawood

T22142

Prepared for Nationwide Builders Pty Ltd

2 November 2022

Contact Information

Genesis Traffic	Suite 531, 7 Eden Park Drive Macquarie Park
	www.genesistraffic.com.au
	ABN 34 660 055 532
Email	bernard@genesistraffic.com.au
Approved By	Bernard Lo

Document Information

Report	Traffic Impact Assessment
Prepared for	Nationwide Builders Pty Ltd
Architects	Tony Owen Partners,
Project Name	15 Hilwa Street, 896-898 Woodville Road, Villawood
Council	Fairfield City Council
Job Reference	T22142
Date	2/11/2022
Version Number	4

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	12/07/2022	Draft	Lamone Ng	Bernard Lo
2	13/07/2022	1	Lamone Ng	Bernard Lo
3	7/10/2022	2	Lamone Ng	Bernard Lo
4	21/11/2022	For Issue	Lamone Ng	Bernard Lo

Table of Contents

1	Intro	oduction	5
	1.1	Background	5
	1.2	Scope of Works	5
	1.3	Reference Documents	6
2	Exis	ting Conditions	7
	2.1	Site and Surrounding Context	7
	2.2	Road Network	8
	2.3	Traffic Controls	8
	2.4	Public Transport Services	8
3	Pro	posed Development	10
4	Parl	king Assessment	11
	4.1	Car Parking Requirements	11
	4.2	Bicycle Parking Assessment	12
	4.3	Access	12
	4.4	Internal Circulation & Design	12
5	Ser	vicing Arrangement	13
6	Traf	fic Assessment	14
	6.1	Existing Traffic Circumstance	14
	6.2	Existing Site Traffic Generation	14
	6.3	Development Traffic Generation	15
	6.4	Overall Traffic Generation	16
	6.5	Traffic Distribution	16
7	Con	clusion	21

Attachments

Attachment 1 Architectural Plans

Attachment 2 SIDRA Assessment

Table 4-1	Car Parking Requirements	11
Table 4-2	Parking Requirement	11
Table 4-3	Bicycle Parking Requirements	12
Table 6-1	Existing Intersection Traffic Circumstance	14
Table 6-2	Traffic Generation During Peak Hour	15
Table 6-3	Proportion of Supermarket Traffic Generation	15
Table 6-4	Net Peak Hour Traffic Generation	16
Table 6-5	Proportion of Inbound and Outbound Traffic	16
Table 6-6	Existing and Post Development Traffic Generation Outcome	20

Figures

Figure 1-1	Site	5
Figure 2-1	Site Context	7
Figure 6-1	Intersection of Woodville Road and Howatt Street	17
Figure 6-2	Development Traffic Distribution (Residential)	18
Figure 6-3	Development Traffic Distribution (Commercial)	19

1 Introduction

1.1 Background

This report has been prepared to accompany a Planning Proposal to Fairfield City Council to increase building height and floor space ratio to permit a mixed-use development on a site at 15 Hilwa Street, 896-898 Woodville Road, Villawood (Figure 1-1).

Figure 1-1 Site

Source: Tony Owen Partners

1.2 Scope of Works

The purpose of this report is to:

• describe the site, its context and the planning proposal

- describe the road network serving the site and the prevailing traffic conditions
- assess the potential traffic implications arising from the intensified uses
- assess the suitability of the envisaged parking provision
- assess, on a high level, the suitability of the envisaged access roads and provision for servicing

1.3 Reference Documents

Reference has been made to the following documents when preparing this report:

- AS2890 (Australian/NZ Standards, 2004)
- Development Control Plan (Fairfield City Council, 2013)
- RMS Guide to Traffic Generating Developments, RTA, 2002
- ARRB 25th Conference Publication Extract, Perth, Australia 2012

 $\mathbf{ }$

2 Existing Conditions

2.1 Site and Surrounding Context

The development site (Figure 2-1) has frontages to Woodville Road (40m), Hilwa Street (18m) and Howatt Street (30m) and occupies an irregularly shaped area of approximately 3,225m². This consists of a large rectangular block on the corner of Woodville Road and Howatt Street between Hilwa Street and Woodville Road.

Figure 2-1 Site Context

Source: Nearmap

Adjoining the site is a service station with frontage to Woodville Road. To the north (across Howatt Street) is a multi-storey mixed-use complex also developed by the proponent of this Planning Proposal.

Existing land uses on the site are primarily bulky goods retail. Vehicle accesses are located at Woodville Road and Howatt Street.

2.2 Road Network

The road network serving the site area comprises:

- Hume Highway a State Highway and arterial route for both inter and intra-state travel
- Woodville Road a State Road and arterial route connecting Great Western Highway/M4 and Hume Highway
- Henry Lawson Drive a State Road and sub-arterial route connecting Hume Highway and M5/Milperra Road
- Christina Road part of a Regional Road and collector route connecting Carramar and Regents Park, which interchanges with Woodville Road (via on/off ramps)
- The Horsley Drive a sub-arterial road connecting Hume Highway and Cumberland Highway
- Llewellyn Avenue, Villawood Road and Wattle Avenue are minor collector routes connecting Villawood and Carramar.
- Villawood Place/Howatt Street– part of a local road system off Woodville Road providing access to the local Villawood shop
- Kamira Circuit– a local one-way access road connecting Kamira Avenue and Villawood Road
- Kirang Avenue a collector road connecting local streets to Woodville Road
- Hilwa Street a local road and a dead-end cul-de-sac

2.3 Traffic Controls

The traffic controls on the road system in the vicinity of the site comprise:

- the traffic signal controls along Woodville Road at the Villawood Road, Binna Burra Street, Kirang Avenue and Hume Highway intersections
- the pedestrian mid-block traffic signals on River Avenue just to the north of the station
- the roundabout at the Llewellyn Avenue and Marple Avenue intersection
- the Bus Only right turn lane from Woodville Road to Howatt Street (southbound)
- the PM (3-7pm) right turn restriction from Woodville Road to Kirang Road (southbound)
- the one-way restriction in the Kamira Circuit carpark and Cheryl Lane

2.4 Public Transport Services

Villawood Railway Station is located 300m to the north on River Avenue. It provides high-frequency train services on the following lines and services:

• T2 line connecting with Parramatta, Leppington and the Sydney CBD

• T3 line connecting with Liverpool CBD, Lidcombe, Bankstown, and Sydney CBD

Local facilities in the railway station include a commuter car park and bicycle racks

3 Proposed Development

A Planning Proposal is to be lodged with Fairfield City Council to change its minimum lot size, building height, floor space ratio (FSR), and zoning.

Under the amended development parameters, it is envisaged that the building envelope could enable the development of the following:

- A retail floor plate of up to 2,350m² GFA (plus associated back-of-house facilities)
- Up to 135 residential units in the following mix:
 - \circ 36 x 1 Bed
 - o 78 x 2 Bed
 - o 16 x 3 Bed
- Dedicated service and loading dock
- Basement car park for retail customers (Class 3)
- Basement car park for residents and visitors (Class 1)

The envisaged vehicle access arrangement would involve:

- a commercial vehicle access at Howatt Street (to the retail car park and loading dock)
- a residential car park access at Hilwa Street

Details of the envisaged development scheme, which are prepared by Tony Owen Partners, are reproduced in part in Attachment 1.

4 Parking Assessment

4.1 Car Parking Requirements

Residential

Due to the site's proximity to the local railway station, the provisions made in the ADG SEPP 65 will be applicable to the proposal's residential component. The relevant parking criteria are summarised in Table 4-1.

Table 4-1	Car Parking Requirements
-----------	--------------------------

Element	ADG Rate	Min. Requirement
36 x one-bedroom apartments	0.6	22
78 x two-bedroom apartments	0.9	70
16 x three-bedroom apartments	1.4	22
Residential visitors (127)	0.2	27
Sub Total		141 spaces

Retail/Commercial

Council's approved retail parking rate for the adjoining 1 Villawood Place and 47 Pedestrian Plaza is 1 space per 40m². On the same basis, the retail GFA of 2,350m² would indicate a requirement of 59 spaces.

Thus, the total development car parking requirement is summarised in Table 4-2.

Table 4-2 Parking Requirement

Element	Min. Requirement
Residents	114
Residential visitors	27
Retail/Commercial	59
Total	200 spaces

Proposed Provision

It is proposed to provide the necessary quantum of parking spaces in the basement to comply with the above criteria. The residential and commercial/retail car parking area will be separated, with the residential access located at Hilwa Street (a local street) and the commercial access located at Howatt Street (a town centre access road).

4.2 Bicycle Parking Assessment

The DCP specifies the following criteria for bicycle storage:

- Residents
 1 space per 3 apartments
- Commercial 1 space per 300 sqm

Application of the above would indicate in Table 4-3:

Table 4-3Bicycle Parking Requirements

Element	Unit	DCP
Apartments	135	45
Commercial Space	2,350m ²	8
Total		53 spaces

The proposed car park will accommodate the necessary quantum of bicycle storage in accordance with the DCP objective.

4.3 Access

The site is fronted by Woodville Road (State Road), Hilwa Street (residential dead-end Local Road), and Howatt Street (Town Centre Local Road).

The TfNSW's design principle is to prohibit site access to State/owned or managed road frontage for sites with a lower-order alternative road frontage. For this reason, the site accesses could only be gained via either Hilwa Street and Howatt Street.

Because Hilwa Street is a residential dead end local road, it is unsuitable for retail traffic. For this reason, it is proposed to assign the residential car park access at Hilwa Street. The retail and commercial car park (including loading dock access) will be located at Howatt Street.

4.4 Internal Circulation & Design

The car park layout has regard to the relevant AS2890.1 and AS2890.2 principles, particularly in relation to:

- Car park geometry
- Driveway width
- Ramp grades & Transitions
- Headroom
- Turning provision

A detailed review of the car park will be undertaken during the DA stage assessment.

5 Servicing Arrangement

A loading area will be provided onsite and accessed via Howatt Street. It is envisaged that the loading area will accommodate a 12.5m Heavy Rigid Vehicle (HRV).

Garbage collection for the commercial development will also occur at the proposed loading bay by a private waste contractor. The largest nominated waste collection vehicle is a 10.5m HRV.

The proposed loading dock will be subject to a detailed design review to ensure compliance with the relevant AS2890.2 criteria in the subsequent Traffic Impact Assessment.

6 Traffic Assessment

6.1 Existing Traffic Circumstance

Traffic surveys were commissioned as part of this assessment to record the AM peak and PM peak traffic flows for the following relevant intersections:

- Woodville Road / Villawood Road
- Villawood Road / Villawood Place
- Woodville Road / Howatt Street
- Woodville Road / Kirang Avenue

An indication of prevailing traffic operations at these intersections is provided in the SIDRA assessment (Table 6-1).

Table 6-1 Existing Intersection Traffic Circumstance

Intersection	AM	/ Peak	PM	Peak
	LOS	AVD	LOS	AVD
Woodville Road / Villawood Road	В	15.1s	D	40.4s
Villawood Road / Villawood Place	А	4.2s	А	4.5s
Woodville Road / Howatt Street	В	15.9s	В	13.1s
Woodville Road / Kirang Avenue	А	14.3s	В	18.1s

Details of the model output are reproduced in Attachment 2.

The assessment found the intersections to operate satisfactorily under the Council's models' traffic demand and there is no apparent capacity constraint in the local road network.

6.2 Existing Site Traffic Generation

The RMS Guide to Traffic Generating Development (RMSGTGD) reveals a peak hour traffic generation rate for a single dwelling of 0.88 vehicle trips per hour (vtph). Therefore, the two dwellings currently on the site would generate up to 2 vtph.

The existing commercial premises on the site is approximately 800 sqm in GFA. The RMSGTGD provides a rate of 2 vtph per 100 sqm GFA. On this basis, the existing uses would generate some 16 vtph.

The total existing traffic generation outcome is assessed to be approximately 18 vtph.

6.3 Development Traffic Generation

<u>Residential</u>

The updated Technical Direction TDT 2013/04a provides revised trip generation rates for high-density residential apartment blocks. The relevant trip rates are as follows:

- 0.19 vtph per unit during the morning peak hour
- 0.15 vtph per unit during the evening peak hour

Application of these trip rates to the 135 proposed residential units would indicate a peak hour traffic generation outcome in Table 6-2.

Table 6-2	Traffic Generation During Peak Hour
-----------	-------------------------------------

Period	Total	In	Out
AM peak	25 vtph	5 vtph	20 vtph
PM peak	20 vtph	15 vtph	5 vtph

<u>Retail</u>

The RMSGTTD provides a peak evening peak traffic generation rate of 12.5 vtph per 100m² GFA for retail floor space. Retail peak traffic does not coincide with the AM peak. Application of the RMS rate to the proposed commercial floor space would indicate a peak hour traffic generation outcome of 293 vtph.

It is pertinent to note that the traffic generation is largely associated with the retail supermarket. A unique feature of supermarket developments is that their traffic generation are typically not entirely new to the road network. A proportion of the patronage will be associated with traffic movements that are already existing on the network at present. A Study published by the Australian Road Research Board (ARRB)¹ reveals the trip composition for supermarkets in Table 6-3.

 Table 6-3
 Proportion of Supermarket Traffic Generation

Trip type	Proportion	Function
Primary	35-45%	Sole <mark>purpose</mark> – new trip
Pass-by	20-25%	Passing trip (along the way)
Diverted	40%	Passing trip (a diversion from nearby road network)

Based on the above, the 'new' traffic is comprised of the 'primary' and 'diverted' trips, i.e., 85% (45% + 40%). On this basis, the retail traffic generation is projected as 250 vtph or 125 vtph each way during the PM peak.

¹ ARRB 25th Conference, Perth, Australia 2012

6.4 Overall Traffic Generation

Having regard to the above, the net traffic generation outcome is tabulated in Table 6-4.

Table 6-4	Net Peak Hour Traffic Generation

	AM Pea	ak (vtph)	PM Pea	k (vtph)
Period	In	Out	In	Out
(Existing)	0	-2	-2	0
Residential	5	19	15	4
Commercial	_*	_*	125	125
Net Traffic	5	17	138	138

*Supermarket retail does not peak during the AM peak

6.5 Traffic Distribution

Reference is made to the Council's commissioned Stantec mesoscopic model (as published in the Traffwise TIA) which reveals the following predominant in/outbound directions in Table 6-5.

Table 6-5Proportion of Inbound and Outbound Traffic

Direction	Inbound	Outbound
Woodville Road (north)	34%	42%
Binna Burra Street (east)	2%	-
Woodville Road (south & west)	64%	58%

It is noted that the southbound right-turn movement from Woodville Road to Howatt Street is currently restricted to buses only (details in Figure 6-1 overleaf). The assessment recommends amending this restriction to allow other vehicles to use the 50m long right turn bay.

Figure 6-1 Intersection of Woodville Road and Howatt Street

Source: Nearmap

On this basis, a SIDRA assessment was undertaken to quantify the development's PM peak traffic impact (worst-case scenario) on the existing road network.

Based on the above, the development's projected traffic distribution is diagrammatically indicated in Figures 6-2 (Residential) and 6-3 (Commercial).

Figure 6-2 Development Traffic Distribution (Residential)

Image Source: Mecone

Figure 6-3 Development Traffic Distribution (Commercial)

Image Source: Mecone

The assessment outcome is provided in Attachment 2 and summarised in Table 6-6.

Table 6-6Existing and Post Development Traffic Generation Outcome

Intersection	AM	Peak	PM	Peak
	LOS	AVD	LOS	AVD
Existing				
Woodville Road / Villawood Road	В	15.1s	D	40.4s
Villawood Road / Villawood Place	А	4.2s	А	4.5s
Woodville Road / Howatt Street	В	15.9s	В	13.1s
Woodville Road / Kirang Avenue	А	7.6s	А	8.6s
Post Development				
Woodville Road / Villawood Road			E	78.7s
Villawood Road / Villawood Place	 Not cr	itical in	A	4.8s
Woodville Road / Howatt Street		ent period	В	15.6s
Woodville Road / Kirang Avenue	_		А	8.7s

The assessment found the intersection of Woodville Road and Villawood Road to downgrade from LOS D to LOS E following the development's occupation. Other intersections in the road network will continue to operate with ample spare capacity.

7 Conclusion

The traffic and parking assessment undertaken for the proposed Planning Proposal at 15 Hilwa Street, 896-898 Woodville Road, Villawood has concluded that:

- the site benefits from good accessibility to local transport services and connectivity to the Villawood Town Centre
- the existing intersections in the vicinity of the site have been shown to operate with adequate levels of service and minimal delays
- the envisaged parking provision will be consistent with the SEPP 65 and DCP criteria
- the projected traffic generation outcome will be some 138 vtph each way during the busiest PM peak
- the existing road network will remain within capacity following the development, although the Woodville Road/ Villawood Road intersection will operate near capacity during the busier PM peak
- it is recommended that the existing bus-only right turn bay from Woodville Road to Howatt Street be modified to permit all vehicles to turn right
- the proposed site access arrangement represents an outcome that complies with the TfNSW's planning principles and preservation of residential amenities at Hilwa Street.
- the proposed access design, internal circulation and service arrangement will have regard for the relevant AS2890 design requirements.

Attachment 1

Architectural Plans

Attachment 2

SIDRA Assessment

Site: 1 [WOODVILLE RD | VILLAWOOD RD | LLEWELLYN AVE AM EX (Site Folder: General)]

WOODVILLE ROAD & VILLAWOOD ROAD & LLEWELLYN AVENUE

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovement	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEMA FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: WO	ODVILLE	ROAD	(SOUTH)										
1	L2	9	2.0	9	2.0	*0.755	19.8	LOS B	37.4	266.5	0.73	0.68	0.73	33.6
2	T1	1767	2.0	1860	2.0	0.755	13.7	LOS B	37.4	266.5	0.71	0.66	0.71	45.6
3	R2	68	2.0	72	2.0	0.512	33.6	LOS C	3.3	23.2	0.77	0.78	0.77	30.1
Appr	oach	1844	2.0	1941	2.0	0.755	14.5	LOS B	37.4	266.5	0.71	0.66	0.71	44.8
East:	LLEW	/ELLYN A	VENUE	(EAST)										
4	L2	29	2.0	31	2.0	0.125	54.7	LOS D	1.6	11.4	0.91	0.72	0.91	23.5
5	T1	12	2.0	13	2.0	*0.308	52.4	LOS D	3.2	23.0	0.94	0.75	0.94	21.4
6	R2	44	2.0	46	2.0	0.308	57.0	LOS E	3.2	23.0	0.94	0.75	0.94	28.6
Appr	oach	85	2.0	89	2.0	0.308	55.5	LOS E	3.2	23.0	0.93	0.74	0.93	26.1
North	n: WOO	DVILLE	ROAD (NORTH)										
7	L2	117	2.0	123	2.0	0.641	17.6	LOS B	18.1	129.0	0.62	0.62	0.62	45.6
8	T1	1310	2.0	1379	2.0	0.641	8.3	LOS A	24.9	176.9	0.54	0.52	0.54	50.0
9	R2	48	2.0	51	2.0	*0.288	36.9	LOS D	2.4	17.1	0.82	0.78	0.82	29.9
Appr	oach	1475	2.0	1553	2.0	0.641	10.0	LOS B	24.9	176.9	0.55	0.53	0.55	48.6
West	: VILL	AWOOD I	ROAD (WEST)										
10	L2	103	2.0	108	2.0	0.254	45.1	LOS D	5.2	37.0	0.86	0.76	0.86	26.5
11	T1	22	2.0	23	2.0	0.090	49.7	LOS D	1.2	8.6	0.91	0.65	0.91	23.0
12	R2	32	2.0	34	2.0	0.178	56.7	LOS E	1.8	12.9	0.93	0.73	0.93	15.6
Appr	oach	157	2.0	165	2.0	0.254	48.1	LOS D	5.2	37.0	0.88	0.74	0.88	23.9
All Vehic	cles	3561	2.0	3748	2.0	0.755	15.1	LOS B	37.4	266.5	0.66	0.61	0.66	44.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian M	Noveme	ent Perf	orman	ce								
Mov Input Dem. Aver. ID Crossing Vol. Flow Delay				Level of <i>i</i> Service				fective Stop	Travel Travel Time Dist.		Aver. Speed	
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec	
South: WOOD	VILLE F	ROAD (S	OUTH)									
P1 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	223.9	220.5	0.98	
East: LLEWEL	LYN AV	ENUE (E	AST)									
P2 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.3	217.2	0.98	
West: VILLAW	/00D R	OAD (WI	EST)									

P4 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	220.6	216.2	0.98
All Pedestrians	150	158	54.3	LOS E	0.2	0.2	0.95	0.95	221.9	218.0	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / IPC | Processed: Tuesday, 12 July 2022 2:44:31 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 1 [WOODVILLE RD | VILLAWOOD RD | LLEWELLYN AVE PM EX (Site Folder: General)]

WOODVILLE ROAD & VILLAWOOD ROAD & LLEWELLYN AVENUE

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	cle M	ovement	Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: WO	ODVILLE	ROAD	(SOUTH)										
1	L2	36	2.0	38	2.0	0.571	13.2	LOS B	23.7	168.5	0.47	0.45	0.47	40.4
2	T1	1544	2.0	1625	2.0	0.571	7.6	LOS A	23.7	168.9	0.47	0.44	0.47	50.9
3	R2	24	2.0	25	2.0	*0.186	67.5	LOS E	1.7	11.9	0.95	0.73	0.95	21.1
Appr	oach	1604	2.0	1688	2.0	0.571	8.7	LOS A	23.7	168.9	0.47	0.44	0.47	49.8
East:	LLEW	/ELLYN A	VENUE	(EAST)										
4	L2	53	2.0	56	2.0	0.125	48.8	LOS D	3.0	21.0	0.82	0.73	0.82	24.9
5	T1	48	2.0	51	2.0	*0.983	107.4	LOS F	13.0	92.2	1.00	1.18	1.67	13.8
6	R2	87	2.0	92	2.0	0.983	111.9	LOS F	13.0	92.2	1.00	1.18	1.67	19.7
Appr	oach	188	2.0	198	2.0	0.983	93.0	LOS F	13.0	92.2	0.95	1.06	1.43	19.1
North	n: WOO		ROAD ((NORTH)										
7	L2	164	2.0	173	2.0	0.970	73.1	LOS E	75.0	534.3	1.00	1.17	1.31	26.3
8	T1	1803	2.0	1898	2.0	*0.970	56.8	LOS E	103.3	735.7	1.00	1.12	1.23	26.0
9	R2	52	2.0	55	2.0	0.493	33.4	LOS C	2.7	19.3	0.71	0.77	0.71	31.3
Appr	oach	2019	2.0	2125	2.0	0.970	57.6	LOS E	103.3	735.7	0.99	1.12	1.22	26.1
West	: VILL	AWOOD F	ROAD (WEST)										
10	L2	140	2.0	147	2.0	0.512	63.7	LOS E	9.4	66.7	0.97	0.80	0.97	21.8
11	T1	29	2.0	31	2.0	0.101	54.5	LOS D	1.8	12.7	0.89	0.66	0.89	21.8
12	R2	79	2.0	83	2.0	0.693	77.5	LOS E	5.9	42.3	1.00	0.84	1.12	12.4
Appr	oach	248	2.0	261	2.0	0.693	67.0	LOS E	9.4	66.7	0.97	0.80	1.01	18.9
All Vehic	cles	4059	2.0	4273	2.0	0.983	40.4	LOS D	103.3	735.7	0.78	0.83	0.92	30.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of . Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: WOOI	OVILLE F	ROAD (S	OUTH)								
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	233.9	220.5	0.94
East: LLEWE	LLYN AV	ENUE (E	AST)								
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	231.3	217.2	0.94

West: VILLAW	/00D R(DAD (WE	ST)								
P4 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	230.6	216.2	0.94
All Pedestrians	150	158	64.3	LOS F	0.2	0.2	0.96	0.96	231.9	218.0	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:34 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 1 [WOODVILLE RD | VILLAWOOD RD | LLEWELLYN AVE PM DEV (Site Folder: General)]

WOODVILLE ROAD & VILLAWOOD ROAD & LLEWELLYN AVENUE

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	لDEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QU [Veh.	ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
Sout	h. MO	veh/h	% ROAD	veh/h (SOUTH)	%	v/c	sec	_	veh	m	_	_	_	km/h
	L2	36		. ,	2.0	0.040	17.0		04.4	004 E	0.57	0.54	0.57	25.4
1			2.0	38	2.0	0.618	17.6	LOS B	31.1	221.5	0.57	0.54	0.57	35.4
2	T1	1546	2.0	1627	2.0	0.618	11.9	LOS B	31.1	221.5	0.56	0.53	0.56	47.0
3	R2	24	2.0	25	2.0	* 0.201	77.5	LOS E	1.8	13.0	0.98	0.69	0.98	19.4
Appro	oach	1606	2.0	1691	2.0	0.618	13.0	LOS B	31.1	221.5	0.57	0.53	0.57	45.9
East:	LLEW	/ELLYN A	VENUE	(EAST)										
4	L2	53	2.0	56	2.0	0.104	45.5	LOS D	2.9	20.9	0.76	0.72	0.76	25.8
5	T1	48	2.0	51	2.0	0.776	74.0	LOS E	10.9	77.3	1.00	0.91	1.16	17.7
6	R2	87	2.0	92	2.0	0.776	78.6	LOS E	10.9	77.3	1.00	0.91	1.16	24.4
Appr	oach	188	2.0	198	2.0	0.776	68.1	LOS E	10.9	77.3	0.93	0.86	1.05	23.0
North	n: WOO	DVILLE	ROAD ((NORTH)										
7	L2	164	2.0	173	2.0	1.067	139.1	LOS F	106.3	756.6	1.00	1.40	1.66	16.9
8	T1	1847	2.0	1944	2.0	* 1.067	128.3	LOS F	152.4	1085.3	1.00	1.41	1.61	14.9
9	R2	57	2.0	60	2.0	0.620	51.2	LOS D	4.0	28.5	0.85	0.85	0.95	25.2
Appr	oach	2068	2.0	2177	2.0	1.067	127.1	LOS F	152.4	1085.3	1.00	1.39	1.60	15.2
West	: VILL	AWOOD I	ROAD (WEST)										
10	L2	190	2.0	200	2.0	0.512	60.8	LOS E	13.0	92.3	0.94	0.81	0.94	22.4
11	T1	29	2.0	31	2.0	0.074	50.2	LOS D	1.8	12.6	0.83	0.62	0.83	22.8
12	R2	154	2.0	162	2.0	* 1.052	155.2	LOS F	18.4	131.3	1.00	1.23	1.85	6.9
Appr	oach	373	2.0	393	2.0	1.052	99.0	LOS F	18.4	131.3	0.95	0.97	1.31	13.8
All Vehic	les	4235	2.0	4458	2.0	1.067	78.7	LOS E	152.4	1085.3	0.83	1.00	1.16	20.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian M	loveme	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	QUE		Prop. Ef Que	Stop	Travel Time		Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: WOOD	VILLE R	ROAD (S	OUTH)								
P1 Full	50	53	69.3	LOS F	0.2	0.2	0.96	0.96	238.9	220.5	0.92
East: LLEWEL	LYN AV	ENUE (E	AST)								
P2 Full	50	53	69.3	LOS F	0.2	0.2	0.96	0.96	236.3	217.2	0.92
West: VILLAW	000 R	OAD (WI	EST)								

P4 Full	50	53	69.3	LOS F	0.2	0.2	0.96	0.96	235.6	216.2	0.92
All Pedestrians	150	158	69.3	LOS F	0.2	0.2	0.96	0.96	236.9	218.0	0.92

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / IPC | Processed: Tuesday, 12 July 2022 2:44:36 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 3 [WOODVILLE RD | HOWATT ST | BINNA BURRA ST AM EX (Site Folder: General)]

WOODVILLE ROAD & HOWATT STREET & BINNA BURRA STREET

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Practical Cycle Time)

Vehi	icle M	ovemen	it Perfo	rmance										
Mov ID	Turn		PUT JMES	DEM FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: WO	ODVILLE	ROAD	(SOUTH)										
1	L2	35	2.0	37	2.0	0.859	28.5	LOS C	39.7	282.3	0.91	0.91	1.00	29.5
2	T1	1778	2.0	1872	2.0	*0.859	22.9	LOS C	39.7	282.7	0.91	0.91	1.00	33.8
Appr	oach	1813	2.0	1908	2.0	0.859	23.0	LOS C	39.7	282.7	0.91	0.91	1.00	33.8
East	: BINN	A BURR/	A STREE	T (EAST))									
4	L2	17	2.0	18	2.0	0.137	40.7	LOS D	1.5	11.0	0.90	0.70	0.90	28.5
5	T1	17	2.0	18	2.0	*0.137	36.1	LOS D	1.5	11.0	0.90	0.70	0.90	25.2
6	R2	41	2.0	43	2.0	0.137	40.7	LOS D	1.5	11.0	0.90	0.72	0.90	26.8
Appr	oach	75	2.0	79	2.0	0.137	39.6	LOS D	1.5	11.0	0.90	0.71	0.90	26.9
Nort	h: WO	ODVILLE	ROAD (NORTH)										
7	L2	45	2.0	47	2.0	0.368	11.0	LOS B	8.5	60.4	0.42	0.41	0.42	46.0
8	T1	1389	2.0	1462	2.0	0.368	5.4	LOS A	8.5	60.7	0.42	0.39	0.42	50.6
9	R2	5	100.0	5	100.0	*0.073	52.9	LOS D	0.2	3.1	0.96	0.66	0.96	15.6
Appr	oach	1439	2.3	1515	2.3	0.368	5.7	LOS A	8.5	60.7	0.42	0.39	0.42	50.1
All Vehi	cles	3327	2.1	3502	2.1	0.859	15.9	LOS B	39.7	282.7	0.70	0.68	0.75	39.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Moveme	ent Perf	orman	ce							
Mov	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossin	g Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: WOC		ROAD (S	OUTH)								
P1 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	210.4	222.5	1.06
East: BINNA	BURRAS	STREET	(EAST)								
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	206.4	217.2	1.05
West: HOW	ATT STRE	ET (WE	ST)								
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	197.2	205.3	1.04
All Pedestrians	150	158	39.3	LOS D	0.1	0.1	0.94	0.94	204.7	215.0	1.05

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:38 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 3 [WOODVILLE RD | HOWATT ST | BINNA BURRA ST PM EX (Site Folder: General)]

WOODVILLE ROAD & HOWATT STREET & BINNA BURRA STREET

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Practical Cycle Time)

Vehi	icle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INF VOLL [Total	PUT JMES HV 1	DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		veh/h	⊓vj %	veh/h	⊓vj %	v/c	sec		veh	Dist] m		Rate	Cycles	km/h
Sout	h: WO	ODVILLE	ROAD (SOUTH)										
1	L2	50	2.0	53	2.0	0.810	24.6	LOS C	28.8	204.7	0.89	0.85	0.94	31.9
2	T1	1539	2.0	1620	2.0	*0.810	19.1	LOS B	28.8	205.2	0.89	0.85	0.94	36.5
Appr	oach	1589	2.0	1673	2.0	0.810	19.2	LOS B	28.8	205.2	0.89	0.85	0.94	36.3
East	: BINN	A BURRA	A STREE	T (EAST)										
4	L2	15	2.0	16	2.0	0.191	36.7	LOS D	2.0	14.6	0.90	0.70	0.90	30.4
5	T1	41	2.0	43	2.0	*0.191	32.1	LOS C	2.0	14.6	0.90	0.70	0.90	27.1
6	R2	53	2.0	56	2.0	0.188	36.7	LOS D	1.9	13.8	0.90	0.73	0.90	28.1
Appr	oach	109	2.0	115	2.0	0.191	34.9	LOS C	2.0	14.6	0.90	0.72	0.90	28.1
Nort	h: WOC	DVILLE	ROAD (NORTH)										
7	L2	98	2.0	103	2.0	0.520	12.1	LOS B	12.8	91.5	0.53	0.52	0.53	44.7
8	T1	1856	2.0	1954	2.0	0.520	6.5	LOS A	12.9	92.2	0.52	0.49	0.52	48.9
9	R2	2	100.0	2	100.0	*0.026	46.4	LOS D	0.1	1.1	0.95	0.62	0.95	17.0
Appr	oach	1956	2.1	2059	2.1	0.520	6.8	LOS A	12.9	92.2	0.53	0.49	0.53	48.6
All Vehi	cles	3654	2.1	3846	2.1	0.810	13.1	LOS B	28.8	205.2	0.69	0.65	0.72	41.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Moveme	ent Perf	orman	ce							
Mov	Input	Dem.	Aver.		AVERAGE		Prop. Ef		Travel	Travel	Aver.
ID Crossin	9 Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. 3	Speed
	ped/h	ped/h	sec		ped	m		Tate	sec	m	m/sec
South: WOO	DVILLE R	ROAD (Se	OUTH)								
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	205.5	222.5	1.08
East: BINNA	BURRA S	STREET	(EAST)								
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	201.4	217.2	1.08
West: HOWA	ATT STRE	ET (WES	ST)								
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	192.2	205.3	1.07
All Pedestrians	150	158	34.3	LOS D	0.1	0.1	0.93	0.93	199.7	215.0	1.08

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:40 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 3 [WOODVILLE RD | HOWATT ST | BINNA BURRA ST PM DEV (Site Folder: General)]

WOODVILLE ROAD & HOWATT STREET & BINNA BURRA STREET

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Practical Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLU	JMES	DEM/ FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: WO	ODVILLE	ROAD	(SOUTH)										
1	L2	131	2.0	138	2.0	0.854	29.0	LOS C	33.9	241.6	0.92	0.94	1.04	28.8
2	T1	1541	2.0	1622	2.0	*0.854	23.4	LOS C	34.1	243.1	0.92	0.94	1.04	33.3
Appr	oach	1672	2.0	1760	2.0	0.854	23.8	LOS C	34.1	243.1	0.92	0.94	1.04	33.0
East	: BINN	A BURRA	STREE	ET (EAST)										
4	L2	15	2.0	16	2.0	0.191	36.7	LOS D	2.0	14.6	0.90	0.70	0.90	30.4
5	T1	41	2.0	43	2.0	*0.191	32.1	LOS C	2.0	14.6	0.90	0.70	0.90	27.1
6	R2	53	2.0	56	2.0	0.188	36.7	LOS D	1.9	13.8	0.90	0.73	0.90	28.1
Appr	oach	109	2.0	115	2.0	0.191	34.9	LOS C	2.0	14.6	0.90	0.72	0.90	28.1
Nort	h: WO	ODVILLE	ROAD (NORTH)										
7	L2	98	2.0	103	2.0	0.523	12.1	LOS B	13.0	92.3	0.53	0.52	0.53	44.7
8	T1	1856	2.0	1954	2.0	0.523	6.5	LOS A	13.1	93.0	0.52	0.49	0.52	48.9
9	R2	47	2.0	49	2.0	*0.360	46.3	LOS D	2.0	14.1	0.99	0.74	0.99	18.0
Appr	oach	2001	2.0	2106	2.0	0.523	7.7	LOS A	13.1	93.0	0.54	0.50	0.54	47.3
All Vehi	cles	3782	2.0	3981	2.0	0.854	15.6	LOS B	34.1	243.1	0.72	0.70	0.77	39.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	an Moveme	ent Perf	orman	ce							
Mov	Input	Dem.	Aver.	Level of .	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossi	ing Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: WC	ODVILLE R	ROAD (S	OUTH)								
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	205.5	222.5	1.08
East: BINN	NA BURRA S	STREET	(EAST)								
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	201.4	217.2	1.08
West: HOV	WATT STRE	ET (WE	ST)								
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	192.2	205.3	1.07
All Pedestrian	150 Is	158	34.3	LOS D	0.1	0.1	0.93	0.93	199.7	215.0	1.08

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:42 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 4 [WOODVILLE RD | KIRRANG AVE AM EX (Site Folder: General)]

WOODVILLE ROAD & KIRRANG AVENUE

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	MES	DEM/ FLO	WS	Deg. Satn		Level of Service	QUE		Prop. E Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: WO	ODVILLE	ROAD	(SOUTH)										
1	L2	12	2.0	13	2.0	0.325	10.4	LOS B	8.7	61.8	0.35	0.32	0.35	49.5
2	T1	1784	2.0	1878	2.0	*0.485	6.3	LOS A	15.5	110.3	0.40	0.37	0.40	52.8
Appro	oach	1796	2.0	1891	2.0	0.485	6.3	LOS A	15.5	110.3	0.40	0.36	0.40	52.8
North	: WO	DVILLE	ROAD (NORTH)										
8	T1	1383	2.0	1456	2.0	0.335	4.9	LOS A	9.1	64.5	0.35	0.31	0.35	53.6
9	R2	1	2.0	1	2.0	0.335	10.5	LOS B	8.9	63.1	0.35	0.31	0.35	52.8
Appro	oach	1384	2.0	1457	2.0	0.335	4.9	LOS A	9.1	64.5	0.35	0.31	0.35	53.6
West	: KIRF	RANG AVE	ENUE (V	VEST)										
10	L2	19	2.0	20	2.0	0.077	56.0	LOS E	1.0	7.3	0.90	0.70	0.90	26.1
12	R2	101	2.0	106	2.0	*0.410	56.3	LOS E	5.8	41.4	0.96	0.78	0.96	27.8
Appro	oach	120	2.0	126	2.0	0.410	56.3	LOS E	5.8	41.4	0.95	0.77	0.95	27.6
All Vehic	les	3300	2.0	3474	2.0	0.485	7.6	LOS A	15.5	110.3	0.40	0.36	0.40	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	forman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of , Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
South: WOOD	ped/h DVILLE F	ped/h ROAD (S	sec OUTH)	-	ped	m	-	-	sec	m	m/sec
P1 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	225.7	222.8	0.99
All Pedestrians	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	225.7	222.8	0.99

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:43 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 4 [WOODVILLE RD | KIRRANG AVE PM EX (Site Folder: General)]

WOODVILLE ROAD & KIRRANG AVENUE

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	n: WO	ODVILLE	ROAD ((SOUTH)										
1	L2	38	2.0	40	2.0	0.294	10.9	LOS B	7.9	56.1	0.36	0.35	0.36	48.8
2	T1	1549	2.0	1631	2.0	0.439	6.5	LOS A	13.7	97.7	0.40	0.37	0.40	52.3
Appro	oach	1587	2.0	1671	2.0	0.439	6.6	LOS A	13.7	97.7	0.40	0.37	0.40	52.1
North	n: WOO	DVILLE	ROAD (NORTH)										
8	T1	1859	2.0	1957	2.0	* 0.457	6.4	LOS A	14.6	103.9	0.42	0.39	0.42	52.0
Appro	oach	1859	2.0	1957	2.0	0.457	6.4	LOS A	14.6	103.9	0.42	0.39	0.42	52.0
West	: KIRF	RANG AVE	ENUE (V	VEST)										
10	L2	38	2.0	40	2.0	0.138	54.0	LOS D	2.0	14.5	0.90	0.73	0.90	26.4
12	R2	121	2.0	127	2.0	*0.439	54.8	LOS D	6.9	49.0	0.95	0.79	0.95	28.2
Appro	oach	159	2.0	167	2.0	0.439	54.6	LOS D	6.9	49.0	0.94	0.77	0.94	27.8
All Vehic	les	3605	2.0	3795	2.0	0.457	8.6	LOS A	14.6	103.9	0.44	0.40	0.44	49.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance												
Mov ID Crossing					Level of AVERAGE BACK OF Service QUEUE			fective Stop	Travel Time		Aver. Speed		
	ped/h	ped/h	sec		[Ped ped	 Dist] m	Que	Rate	sec		m/sec		
South: WOOD	OVILLE F	ROAD (S	OUTH)										
P1 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	225.7	222.8	0.99		
All Pedestrians	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	225.7	222.8	0.99		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:45 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Site: 4 [WOODVILLE RD | KIRRANG AVE PM DEV (Site Folder: General)]

WOODVILLE ROAD & KIRRANG AVENUE

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle Movement Performance														
Mov ID	Turn		INPUT VOLUMES [Total HV]		AND WS HV 1	Deg. Satn	Aver. Level of Delay Service		95% BA QUE [Veh.		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	[Total veh/h	%	v/c	sec		veh	m				km/h
South	South: WOODVILLE ROAD (SOUTH)													
1	L2	52	2.0	55	2.0	0.297	11.0	LOS B	8.0	56.7	0.36	0.37	0.36	48.7
2	T1	1549	2.0	1631	2.0	0.443	6.5	LOS A	13.9	99.1	0.40	0.38	0.40	52.2
Appro	oach	1601	2.0	1685	2.0	0.443	6.7	LOS A	13.9	99.1	0.40	0.38	0.40	52.0
North	: WOO	DVILLE	ROAD (NORTH)										
8	T1	1859	2.0	1957	2.0	* 0.457	6.4	LOS A	14.6	103.9	0.42	0.39	0.42	52.0
Appro	oach	1859	2.0	1957	2.0	0.457	6.4	LOS A	14.6	103.9	0.42	0.39	0.42	52.0
West	: KIRR	RANG AVE	ENUE (V	VEST)										
10	L2	40	2.0	42	2.0	0.145	54.0	LOS D	2.1	15.3	0.90	0.73	0.90	26.4
12	R2	123	2.0	129	2.0	*0.447	54.8	LOS D	7.0	49.9	0.95	0.79	0.95	28.2
Appro	oach	163	2.0	172	2.0	0.447	54.6	LOS D	7.0	49.9	0.94	0.77	0.94	27.8
All Vehic	les	3623	2.0	3814	2.0	0.457	8.7	LOS A	14.6	103.9	0.44	0.40	0.44	49.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance												
Mov ID Crossing	Input	Dem. Flow	Aver. Delay		Level of AVERAGE BACK OF Service QUEUE			ffective Stop	Travel Time	Travel Dist.	Aver. Speed		
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec		
South: WOOD	OVILLE F	ROAD (S	OUTH)										
P1 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	225.7	222.8	0.99		
All Pedestrians	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	225.7	222.8	0.99		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic | Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:47 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

V Site: 2 [VILLAWOOD RD | VILLAWOOD PL AM EX (Site Folder: General)]

VILLAWOOD ROAD & VILLAWOOD PLACE Site Category: Existing Design Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	ov Turn INPUT VOLUMES		JMES	FLO'	DEMAND FLOWS			Aver. Level of Delay Service		95% BACK OF QUEUE		Effective Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: VILL	AWOOD	PL (SO	UTH)										
1	L2	30	2.0	32	2.0	0.089	4.8	LOS A	0.3	2.3	0.21	0.53	0.21	44.9
2	T1	1	2.0	1	2.0	0.089	4.6	LOS A	0.3	2.3	0.21	0.53	0.21	41.7
3	R2	59	2.0	62	2.0	0.089	5.5	LOS A	0.3	2.3	0.21	0.53	0.21	40.1
Appr	oach	90	2.0	95	2.0	0.089	5.3	LOS A	0.3	2.3	0.21	0.53	0.21	42.4
East	East: VILLAWOOD RD (EAST)													
4	L2	17	2.0	18	2.0	0.046	4.6	LOS A	0.0	0.0	0.00	0.47	0.00	42.8
5	T1	65	2.0	68	2.0	0.046	3.4	LOS A	0.0	0.0	0.00	0.47	0.00	45.9
6	R2	2	2.0	2	2.0	0.046	4.6	LOS A	0.0	0.0	0.00	0.47	0.00	40.1
Appr	oach	84	2.0	88	2.0	0.046	3.7	NA	0.0	0.0	0.00	0.47	0.00	45.4
North	n: VILL	AWOOD	PL (NOF	RTH)										
7	L2	1	2.0	1	2.0	0.003	4.7	LOS A	0.0	0.1	0.16	0.48	0.16	38.6
8	T1	1	2.0	1	2.0	0.003	4.6	LOS A	0.0	0.1	0.16	0.48	0.16	42.3
9	R2	1	2.0	1	2.0	0.003	5.6	LOS A	0.0	0.1	0.16	0.48	0.16	44.8
Appr	oach	3	2.0	3	2.0	0.003	4.9	LOS A	0.0	0.1	0.16	0.48	0.16	42.6
West	: VILL	AWOOD	RD (WE	ST)										
10	L2	2	2.0	2	2.0	0.027	4.6	LOS A	0.0	0.0	0.00	0.46	0.00	45.8
11	T1	96	2.0	101	2.0	0.027	3.4	LOS A	0.0	0.0	0.00	0.45	0.00	46.0
12	R2	15	2.0	16	2.0	0.017	5.3	LOS A	0.1	0.4	0.25	0.53	0.25	44.5
Appr	oach	113	2.0	119	2.0	0.027	3.7	LOS A	0.1	0.4	0.03	0.46	0.03	45.8
All Vehic	cles	290	2.0	305	2.0	0.089	4.2	NA	0.3	2.3	0.08	0.49	0.08	44.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: Genesis Traffic | Licence: NETWORK / IPC | Processed: Tuesday, 12 July 2022 2:44:48 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

V Site: 2 [VILLAWOOD RD | VILLAWOOD PL PM EX (Site Folder: General)]

VILLAWOOD ROAD & VILLAWOOD PLACE Site Category: Existing Design Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ח ו		[Total	HV]	FLO [®] [Total	WS HV 1	Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			,	km/h
Sout	h: VILL	AWOOD	PL (SO	UTH)										
1	L2	49	2.0	52	2.0	0.133	5.2	LOS A	0.5	3.5	0.34	0.59	0.34	44.4
2	T1	7	2.0	7	2.0	0.133	5.5	LOS A	0.5	3.5	0.34	0.59	0.34	40.9
3	R2	64	2.0	67	2.0	0.133	6.7	LOS A	0.5	3.5	0.34	0.59	0.34	39.3
Appr	oach	120	2.0	126	2.0	0.133	6.0	LOS A	0.5	3.5	0.34	0.59	0.34	42.2
East:	East: VILLAWOOD RD (EAST)													
4	L2	15	2.0	16	2.0	0.125	4.6	LOS A	0.0	0.0	0.00	0.48	0.00	42.8
5	T1	166	2.0	175	2.0	0.125	3.5	LOS A	0.0	0.0	0.00	0.48	0.00	45.8
6	R2	45	2.0	47	2.0	0.125	4.6	LOS A	0.0	0.0	0.00	0.48	0.00	40.0
Appr	oach	226	2.0	238	2.0	0.125	3.8	NA	0.0	0.0	0.00	0.48	0.00	45.0
North	n: VILL	AWOOD	PL (NOF	RTH)										
7	L2	16	2.0	17	2.0	0.047	4.7	LOS A	0.2	1.2	0.16	0.53	0.16	37.3
8	T1	2	2.0	2	2.0	0.047	5.4	LOS A	0.2	1.2	0.16	0.53	0.16	41.2
9	R2	23	2.0	24	2.0	0.047	6.9	LOS A	0.2	1.2	0.16	0.53	0.16	44.0
Appr	oach	41	2.0	43	2.0	0.047	6.0	LOS A	0.2	1.2	0.16	0.53	0.16	42.2
West	t: VILL	AWOOD	RD (WE	ST)										
10	L2	10	2.0	11	2.0	0.030	4.6	LOS A	0.0	0.0	0.00	0.47	0.00	45.6
11	T1	99	2.0	104	2.0	0.030	3.4	LOS A	0.0	0.0	0.00	0.46	0.00	46.0
12	R2	19	2.0	20	2.0	0.024	6.1	LOS A	0.1	0.6	0.35	0.58	0.35	44.1
Appr	oach	128	2.0	135	2.0	0.030	3.9	LOS A	0.1	0.6	0.05	0.48	0.05	45.6
All Vehic	cles	515	2.0	542	2.0	0.133	4.5	NA	0.5	3.5	0.11	0.51	0.11	44.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: Genesis Traffic | Licence: NETWORK / IPC | Processed: Tuesday, 12 July 2022 2:44:50 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

V Site: 2 [VILLAWOOD RD | VILLAWOOD PL PM DEV (Site Folder: General)]

VILLAWOOD ROAD & VILLAWOOD PLACE Site Category: Existing Design Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU		DEMAND FLOWS		Deg. Satn		Level of Service	95% BA QUE		Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: VILL	AWOOD	PL (SO	UTH)										
1	L2	49	2.0	52	2.0	0.203	5.3	LOS A	0.8	5.5	0.39	0.63	0.39	44.1
2	T1	7	2.0	7	2.0	0.203	5.7	LOS A	0.8	5.5	0.39	0.63	0.39	40.5
3	R2	114	2.0	120	2.0	0.203	6.9	LOS A	0.8	5.5	0.39	0.63	0.39	38.9
Appr	oach	170	2.0	179	2.0	0.203	6.4	LOS A	0.8	5.5	0.39	0.63	0.39	41.2
East:	VILLA	WOOD F	RD (EAS	T)										
4	L2	15	2.0	16	2.0	0.128	4.6	LOS A	0.0	0.0	0.00	0.48	0.00	42.8
5	T1	171	2.0	180	2.0	0.128	3.5	LOS A	0.0	0.0	0.00	0.48	0.00	45.8
6	R2	45	2.0	47	2.0	0.128	4.6	LOS A	0.0	0.0	0.00	0.48	0.00	40.0
Appr	oach	231	2.0	243	2.0	0.128	3.8	NA	0.0	0.0	0.00	0.48	0.00	45.1
North	n: VILL	AWOOD	PL (NOF	RTH)										
7	L2	16	2.0	17	2.0	0.047	4.7	LOS A	0.2	1.2	0.16	0.53	0.16	37.2
8	T1	2	2.0	2	2.0	0.047	5.4	LOS A	0.2	1.2	0.16	0.53	0.16	41.1
9	R2	23	2.0	24	2.0	0.047	7.0	LOS A	0.2	1.2	0.16	0.53	0.16	44.0
Appr	oach	41	2.0	43	2.0	0.047	6.0	LOS A	0.2	1.2	0.16	0.53	0.16	42.2
West	: VILL	AWOOD	RD (WE	ST)										
10	L2	10	2.0	11	2.0	0.030	4.6	LOS A	0.0	0.0	0.00	0.47	0.00	45.6
11	T1	99	2.0	104	2.0	0.030	3.4	LOS A	0.0	0.0	0.00	0.46	0.00	46.0
12	R2	19	2.0	20	2.0	0.026	6.4	LOS A	0.1	0.6	0.39	0.60	0.39	43.8
Appr	oach	128	2.0	135	2.0	0.030	4.0	LOS A	0.1	0.6	0.06	0.48	0.06	45.6
All Vehic	cles	570	2.0	600	2.0	0.203	4.8	NA	0.8	5.5	0.14	0.53	0.14	43.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: Genesis Traffic Licence: NETWORK / 1PC | Processed: Tuesday, 12 July 2022 2:44:51 PM Project: G:\2022\TTPA transferred projects\22142 - 15 HILWA ST, 896-898 WOODVILLE RD, VILLAWOOD\MODELS\VILLAWOOD.sip9

Supporting Positive Landuse